Lexikon
Rakẹte
Rakete
Rakete
© wissenmedia
Rakete: Ariane (Schema)
Rakete: Ariane (Schema)
© wissenmedia
Saturn-5-Rakete
Saturn-5-Rakete
© wissenmedia/NASA
Da Stoß und Rückstoß genau entgegengesetzt wirken, kann man eine Steuerung der Rakete nach dem Start dadurch erreichen, dass man die Richtung der ausströmenden Gase verändert. Das gesamte Triebwerk einer Rakete wird deshalb kardanisch aufgehängt. Dadurch ist eine allseitige Schwenkung möglich. Zur Fernlenkung wurden verschiedene Verfahren entwickelt. So peilen Ortungsgeräte in der Rakete das Ziel an und bestimmen selbst den Kurs (Selbstlenkung). Bei anderen Raketen berechnet der Lenkmechanismus die Flugbahn aus der Position bestimmter Gestirne (astronomische Lenkung), oder eine Radaranlage auf der Erde erteilt Lenkkommandos. Oft werden auch mehrere Verfahren gleichzeitig angewandt.
Da es mit einer einzelnen Rakete noch nicht möglich ist, die Kreisbahn eines künstlichen Satelliten zu erreichen oder weiter in den Weltraum vorzustoßen, hat man das Mehrstufenprinzip entwickelt. Dabei trägt eine Rakete als Nutzlast eine zweite Rakete, deren Antrieb erst dann einsetzt, wenn der Antrieb der ersten Rakete (untere Stufe, Startstufe) ausgebrannt ist und abgeworfen wird. Auf diese Weise entstehen zwei- und mehrstufige Raketen.
Triebwerk
Das heute gebräuchliche Prinzip ist das chemische Raketentriebwerk. Der Antriebsstrahl wird durch kontinuierliches Verbrennen fester oder flüssiger Treibstoffe erzeugt:
Das Flüssigkeitsraketentriebwerk enthält flüssigen Brennstoff und den flüssigen Sauerstoffträger (Oxidator) in getrennten Behältern, von wo sie z. B. mit Hilfe von Kreiselpumpen (angetrieben von einem Gasgenerator) im richtigen Mischungsverhältnis in die Brennkammer gefördert und dort gezündet werden. Als Brennstoff dienen z. B. Alkohole, Kerosin, Anilin sowie Wasserstoff; als Oxidator flüssiger Sauerstoff, Salpetersäure, Wasserstoffperoxid u. a. Der Druck in der Brennkammer beträgt bis zu 150 bar, die Temperatur 3000 °C und mehr. Die Ausströmgeschwindigkeit beträgt bis 4500 m/s. Die Brennkammer sowie die Wandung der Schubdüse müssen gekühlt werden. Flüssigkeitsraketentriebwerke lassen sich im Allgemeinen besser regeln als Feststoffraketentriebwerke. Sie dienen hauptsächlich als Antrieb für Forschungs- und Trägerraketen sowie Fernraketenwaffen.
Beim Feststoffraketentriebwerk verwendet man gießbare oder plastisch formbare Treibstoffe. Im Fall des chemischen Einstoffsystems ist der Sauerstoff unmittelbar an den Brennstoff gebunden, beim chemischen Mehrstoffsystem sind Brennstoff und Sauerstoffträger fein verteilt gemischt. Als Brennstoffe dienen Harz, Asphalt, synthetischer Kautschuk; Sauerstoffträger ist Kalium- und Ammoniumperchlorat sowie Ammoniumnitrat. Der Brennkammerdruck bei dieser Antriebsart geht von rund 50 bis 180 bar; die Verbrennungstemperatur liegt bei 800 bis 2500 °C.
Der sog. Hybridantrieb (Fest-Flüssig-Antrieb) vereinigt einige Vorteile des Fest- und Flüssigantriebs. Eine Treibstoffkomponente befindet sich im festen Zustand in der Brennkammer, die andere wird flüssig eingespritzt.
Elektrische Triebwerke liefen bisher nur im Versuchsstadium, Kernenergieantriebe gelangten aus Kostengründen nicht zur Betriebsreife.
Geschichte
Raketen sind etwa seit 970 n. Chr. in China als Feuerwerkskörper bekannt. Seit dem Ende des 13. Jahrhunderts wurden Raketen in Europa für militärische Zwecke verwendet. In unserer Zeit ist die Entwicklung der Rakete u. a. mit den Namen von K. E. Ziolkowskij, H. Oberth, R. H. Goddard, M. Valier, E. Sänger und W. von Braun verknüpft.
Die erste Großanwendung der Rakete war die V-2 des 2. Weltkriegs, deren erster erfolgreicher Start am 3. 10. 1942 von Peenemünde erfolgte; sie erreichte eine Höhe von 90 km und (mit automatischer Umlenkung) eine Flugstrecke von 275 km. Das erste Raketenflugzeug (die He 176) wurde mit einem sog. Walter-Triebwerk angetrieben. Dieses verwendete als Treibstoff Wasserstoffperoxid, das über Kaliumpermanganat geleitet wurde, wobei die Zersetzung in hoch gespannten Wasserstoff und Sauerstoff erfolgte. Die Austrittsgeschwindigkeit betrug rund 1000 m/s. Eine amerikanische Rakete (die WAC-Corporal) erreichte 1945 eine Höhe von 70 km. Die Viking-Rakete (eine Weiterentwicklung der deutschen V-2) flog 1952 217 km hoch und erreichte eine Höchstgeschwindigkeit von 6000 km/h. Die erste amerikanische 2-Stufen-Rakete erreichte 1949 eine Höhe von 402 km. Am 4. 10. 1957 gelang es der Sowjetunion, erstmalig mit einer Mehrstufenrakete einen Satelliten in eine Umlaufbahn zu bringen (Sputnik).
Sputnik 2
Sputnik 2
© wissenmedia/Engelhardt
Die bisher größte Rakete ist die dreistufige Saturn 5 mit 2800 t Startgewicht, die 120 t Nutzlast in eine niedrige Umlaufbahn oder 45 t auf Fluchtgeschwindigkeit bringen kann. Der erste Start der Saturn 5 erfolgte am 9. 11. 1967 im Rahmen des Apolloprogramms.
Weitere bekannte Trägerraketen bzw. -familien sind die Atlas, die Delta, die Titan, die Titan III E/Centaur, die Taurus, die von einem Flugzeug aus startende Pegasus (alle USA), die Sojus, die Proton (beide Russland) und die europäische Ariane. Das erste wiederverwendbare Trägersystem stellen die Raumtransporter (Spaceshuttle) der NASA dar, die seit 1981 im Einsatz sind und bis zu sieben Astronauten in den Orbit bringen können.
Wissenschaft
Ich schmier’ Dir eine, Du Stinkbier!
Die Sonne steht schon hoch am Himmel, und in der Sommer-Regel steht: ordentlich eincremen. Wer kleine Kinder hat, der weiß, das kann ein Riesenvergnügen für die ganze Familie sein, vor allem, wenn man es schon eilig hat, außer Haus zu kommen. Auch Erwachsene sind oft noch der Meinung, man müsse die Haut lediglich zu Beginn […]...
Wissenschaft
Zurück zum Mond
Am 20. Juli 1969 landeten die ersten Menschen auf dem Mond, die letzten verließen ihn am 14. Dezember 1972. Seit mehr als 50 Jahren waren nur noch Roboter dort oben. Einer der Hauptgründe dafür ist sicherlich, dass die bemannten Mondmissionen extrem teuer waren: Mehr als 25 Milliarden US-Dollar kostete das Apollo-Programm....