Lexikon
Atọmbombe
A-Bombeeine im 2. Weltkrieg in den USA entwickelte und zum ersten Mal im August 1945 gegen die japanischen Städte Hiroshima und Nagasaki eingesetzte Kernwaffe. Sie enthält als Sprengmasse hoch angereicherte Isotope von schweren Atomen (Uran 235, Plutonium 239), die durch schnelle Neutronen in zwei Kerne von mittlerer Massenzahl gespalten werden. In diesen Materialien bringt jedes der zwei bis drei bei einer Kernspaltung frei werdenden Neutronen wiederum einen neuen Kern zur Spaltung, so dass die Spaltungsrate in winzigen Bruchteilen einer Sekunde rapide ansteigt und (theoretisch) die Gesamtheit der Kerne unter Freisetzung riesiger Energie- und Strahlungsmengen gespalten wird. Diese ungesteuerte Kettenreaktion setzt jedoch erst ein, wenn eine gewisse Menge des betreffenden Materials kompakt vereint ist; ist die Materialmenge zu gering, d. h. die Oberfläche im Verhältnis zur Masse zu groß, können zu viele der bei (immer stattfindenden) spontanen Kernspaltungen frei werdenden Neutronen aus dem Material entweichen, so dass sich die Reaktion nicht fortsetzt. Die kritische Masse hängt stark von der Formgebung (= Größe der Oberfläche) ab, ist am geringsten bei Kugelform und beträgt in diesem Falle bei 235U rund 15 kg (etwa 0,8 l Volumen). In Spaltungs-Kernwaffen ist der Kern-Explosionsstoff als zwei oder mehrere voneinander getrennte Massen untergebracht, die zur Zündung zu einer überkritischen Masse vereint werden; z. B. kann der Stoff zu zwei Halbkugeln geformt werden; zur Zündung wird mit einem Sprengsatz die eine Halbkugel gegen die andere geschossen. In der Praxis wird nur ein Bruchteil des in der Kernwaffe enthaltenen spaltbaren Materials zur Reaktion gebracht, da die hierbei entstehende Temperatur (etwa 15 Millionen Kelvin) und der auftretende Druck (mehrere Millionen hPa) das Material in Mikrosekunden verdampft und zerstreut und damit die weitere Umsetzung stoppt. Der eigentliche Explosionsvorgang läuft in rund einer millionstel Sekunde ab.
Atompilz
Atompilz
© Corbis/Bettmann/UPI
Bei der Umsetzung von 1 kg 235U werden rund 23 Millionen kWh frei; dies entspricht etwa der bei der Explosion von 20 000 t TNT frei werdenden Energie (Explosionsstärke 20 kt). Solch eine kleinere Kernwaffe erzeugt eine Druckwelle, die bis zu 2 km Entfernung Häuser zum Einsturz bringt, und einen Hitzestoß, der bis etwa 2,5 km Radius alles brennbare Material entflammt. Die Strahlung wirkt auf 1 km unmittelbar tödlich, bis 3 km schwer schädigend. Das Material der Waffe wird zerstäubt, unter Umständen auch Material des von Neutronenstrahlen getroffenen und dadurch radioaktiven Erdbodens. Diese Substanzen, die bei der Explosion in die Höhe gerissen werden, gelangen als Fallout wieder aus der Erdatmosphäre und können langzeitlich radioaktive Verseuchung hervorrufen. Die bisher größten in der Atmosphäre gezündeten Kernspaltungsbomben hatten eine Sprengkraft von etwa 120 Megatonnen TNT. – Inzwischen verfügt eine Reihe weiterer Staaten über Atombomben. Atommächte; Atomwaffen.
Wissenschaft
Trias-Jura-Aussterben durch Kälte statt Hitze
Was steckte hinter dem großen Massenaussterben vor rund 202 Millionen Jahren, das die Ära der Dinosaurier einläutete? Bisher wurde dafür eine globale Erwärmung im Zuge von intensivem Vulkanismus verantwortlich gemacht. Doch neue Studienergebnisse lassen nun vermuten, dass plötzliche vulkanische Winter den terrestrischen Lebewesen...
Wissenschaft
Wie sich das Gehirn in der Schwangerschaft verändert
Eine Schwangerschaft verändert nicht nur den weiblichen Körper, sondern auch das Gehirn. Das zeigt eine Studie anhand von wiederholten Hirnscans einer Erstgebärenden vor, während und nach der Schwangerschaft. Demnach schrumpft die graue Substanz ab der neunten Schwangerschaftswoche, während das Volumen der weißen Substanz, also...